Business PreCalculus MATH 1643 Section 004, Spring 2014 Lesson 21: Rational Functions

Definition 1. <u>Rational Function</u>: A function f that can be expressed in the form

$$f(x) = \frac{N(x)}{D(x)},$$

where the numerator N(x) and the denominator D(x) are polynomials and D(x) is not the zero polynomial, is called a **rational function**. The domain of f(x) is all real numbers for which $D(x) \neq 0.$

Example 1. The function $f(x) = \frac{x^2 - 2x + 5}{x^2 - 2x - 3}$ is a rational function with domain equals to $(-\infty, -1) \cup$ $(-1,3) \cup (3,\infty).$

Definition 2. Vertical Asymptote: The line x = a is called a vertical asymptote of the graph of a function f(x) if $|f(x)| \to \infty$ as $x \to a^+$ or $x \to a^-$.

Definition 3. Locating Vertical Asymptotes of Rational Functions: If $f(x) = \frac{N(x)}{D(x)}$ is a rational function, where N(x) and D(x) **DO NOT have a common factor** and a is a real zero of D(x), then the **line** with equation x = a is a **vertical asymptote** of the graph of f(x).

Example 2. Find the vertical asymptote of $f(x) = \frac{x+2}{x^2-4}$. **Solution:** To locate the vertical asymptotes of f(x), we need to factor both the numerator and the denominator:

$$f(x) = \frac{x+2}{x^2-4} = \frac{x+2}{(x+2)(x-2)} = \frac{1}{x-2}.$$
 Cancel out $(x+2)$

Since the numerator N(x) = 1 and D(x) = x - 2 has no common factor, then solving the equation x-2=0 implies that x=2 is a vertical asymptote of f(x). Note that since x=-2 is not in the domain, then we were able to cancel out the factor (x+2) in f(x).

Definition 4. Horizontal Asymptote: The line y = k is called a horizontal asymptote of the graph of a function f(x) if $f(x) \to k$ as $x \to \infty$ or as $x \to -\infty$.

Definition 5. Locating Horizontal Asymptotes of Rational Functions: Let $f(x) = \frac{N(x)}{D(x)}$ be a rational function. To locate the horizontal asymptote of

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_2 x^2 + b_1 x + b_0}$$

we compare the **degrees** n and m:

- 1. If n < m, then the x-axis or y = 0 is the horizontal asymptote.
- 2. If n = m, then the line $y = \frac{a_n}{b_m}$ is the horizontal asymptote.

3. If n > m, then the graph of f(x) has **NO** horizontal asymptote.

Example 3. Find the horizontal asymptotes of $f(x) = \frac{x+3}{x^2-9}$.

<u>Solution</u>: To find the horizontal asymptote, we compare the degree of the numerator with the degree of the denominator, Since n = 1 and m = 2. So n < m which means that y = 0 is the horizontal asymptote.

Definition 6. <u>x-intercepts of Rational Functions</u>: To find the x-intercepts of a rational function $f(x) = \frac{N(x)}{D(x)}$, then write f(x) in lowest terms and solve the equation N(x) = 0.

Example 4. Find the x-intercepts of $f(x) = \frac{x+3}{x^2-4}$.

Solution: To find the x-intercepts of $f(x) = \frac{x+3}{x^2-4}$, solve the equation x+3=0, which implies x = -3. Then (-3,0) is the x-intercept.

Definition 7. <u>y-intercepts of Rational Functions</u>: To find the y-intercepts of a rational function $f(x) = \frac{N(x)}{D(x)}$, then put x = 0 and find f(0).

Example 5. Find the y-intercepts of $f(x) = \frac{x+3}{x^2-4}$. <u>Solution:</u> To find the y-intercepts of $f(x) = \frac{x+3}{x^2-4}$, find f(0).

$$f(0) = \frac{0+3}{(0)^2 - 4}$$
$$= \frac{3}{-4} = -\frac{3}{4}$$

Then the y-intercept is $(0, -\frac{3}{4})$.

Example 6. Find a rational function $f(x) = \frac{N(x)}{D(x)}$ that has a vertical asymptote at x = 2, a horizontal asymptote at y = 1 and a y-intercept at (0, -2).

<u>Solution</u>: Since f(x) has a horizontal asymptote at y = 1, then the degrees of N(x) and D(x) are the same and the coefficients a_n and b_m are equal as well. Then we can write $f(x) = \frac{x+c}{x+d}$.

To find vertical asymptotes, **solve** x + d = 0 which implies that x = -d and x = 2 is given to be the vertical asymptote of f(x). Then d = -2. Hence $f(x) = \frac{x+c}{x+d} = \frac{x+c}{x-2}$.

Since (0, -2) is the y-intercept, then $-2 = \frac{0+c}{0-2} = \frac{c}{-2}$. Hence c = 4. Therefore, $f(x) = \frac{x+4}{x-2}$.